High-level Performance Evaluation of Object Detection based on Massively Parallel Focal-plane Acceleration Requiring Minimum Pixel Area Overhead
نویسندگان
چکیده
Smart CMOS image sensors can leverage the inherent data-level parallelism and regular computational flow of early vision by incorporating elementary processors at pixel level. However, it comes at the cost of extra area having a strong impact on the sensor sensitivity, resolution and image quality. In this scenario, the fundamental challenge is to devise new strategies capable of boosting the performance of the targeted vision pipeline while minimally affecting the sensing function itself. Such strategies must also feature enough flexibility to accommodate particular application requirements. From these high-level specifications, we propose a focal-plane processing architecture tailored to speed up object detection via the Viola-Jones algorithm. This architecture is supported by only two extra transistors per pixel and simple peripheral digital circuitry that jointly make up a massively parallel reconfigurable processing lattice. A performance evaluation of the proposed scheme in terms of accuracy and acceleration for face detection is reported.
منابع مشابه
Testing Pixel Level Snakes
Pixel level snakes (PLS) are a cellular active contour technique inspired on the energy-based deformable models. They are based on a pixel-level discretization of the contours and a massively parallel computation on every contour cell which lead to a high speed processing without penalizing the efficiency of the contour location. PLS can be fully implemented in current focal plane processor arr...
متن کاملFocal-Plane CMOS Wavelet Feature Extraction for Real-Time Pattern Recognition
Kernel-based pattern recognition paradigms such as support vector machines (SVM) require computationally intensive feature extraction methods for high-performance real-time object detection in video. The CMOS sensory parallel processor architecture presented here computes delta-sigma (∆Σ)-modulated Haar wavelet transform on the focal plane in real time. The active pixel array is integrated with...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملChange Detection Gamasiab River Margins in Kermanshah by Comparison Pixel Base and Object Orientd Algorithms
Introduction Land use reflects the interactive characteristics of humans and the environment and describes how human exploitation works for one or more targets on the ground. Land use is usually defined on the basis of human use of the land, with an emphasis on the functional role of land in economic activities. Land use, which is associated with human activity, is undergoing change over time....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016